
SPIRRID – tool for estimation of statistical characteristics of
functions with multivariate random inputs

VÁCLAV SADÍLEK and
MIROSLAV VOŘECHOVSKÝ
Brno University of Technology
Faculty of Civil Engineering

Institute of Structural Mechanics
Veveřı́ 331/95, 602 00 Brno

CZECH REPUBLIC
sadilek.v@fce.vutbr.cz

ROSTISLAV CHUDOBA and
ROSTISLAV RYPL

RWTH Aachen University
Faculty of Civil Engineering

Institute of Structural Concrete
Mies-van-der-Rohe-Strae 1, D-52074 Aachen

GERMANY
rostislav.chudoba@rwth-aachen.de

Abstract: This paper is a promotion of a recently published journal paper [1]. The paper presents application of
known mathematical methods and computational techniques for the numerical integration in the computational tool
SPIRRID (Python package) for efficient and flexible evaluation of the statistical characteristics of functions with
multivariate random inputs developed in high-level programming language Python. The paper describes mathe-
matical formulation of the estimation of the statistical characteristics, design of an object oriented architecture of
the package and results of performance studies. The code of this computational tool including examples and the
results of performance studies is available via the free repository [2].

Key–Words:Python, Enthought Traits, NumPy, SciPy, C, statistical characteristics, multidimensional integration

1 Introduction
SPIRRID is an open source project with object ori-
ented architecture for estimation of the statistical char-
acteristics of functions with multivariate random in-
puts. This computational tool was developed in
high-level programming language Python. High-
level languages for scientific computing offer appli-
cation programmers a convenient and efficient tool
for the formulation and implementation of mathemat-
ical models. SPIRRID package uses two rich numer-
ical librariesnumpy andscipy. These libraries em-
body algorithms and methods developed over the past
decades in the compiled languages FORTRAN and
C++. As further documented in [3], the high flexi-
bility of the scripting language is not necessarily ac-
companied by a lower efficiency with respect to the
compiled code. Indeed, when implementing mathe-
matical expressions in vectorized form using compact
array representation [4], the tradeoff between flexibil-
ity and efficiency is reduced to an acceptable level [5].

The presentation and explanation of the package
SPIRRID is performed using an illustrative example
that features a simple response function depicted in
Fig. 1 (left):

q(ε;λ, ξ) = λ ε ·H (ξ − ε) . (1)

The generalized implementation called SPIRRID is
applicable for the statistical characterization of an ar-

bitrary function with independent random parameters.
It can be used for statistical analyses of other engi-
neering problems, such as e.g. [6, 7]. The results of
performance studies and figures contained in [1] and
this paper are calculated using function (1), too. This
function defines the stress for a given positive con-
trol strainε of a linear elastic, brittle fiber loaded in
tension with the stiffness parameterλ and breaking
strainξ. The symbolH(x) represents the Heaviside
function returning zero forx < 0 and one forx ≥ 0.
We chose a function containing discontinuity in or-
der to study the ability of the integration algorithm to
reproduce the smoothness of the average response of
an ensemble with a constituent response governed by
a non-smooth function. If many fibers act in paral-
lel, as is the case in a crack bridge in a composite,
they exhibit imperfections. Then, material parameters
λ and ξ are considered independent, identically dis-
tributed random parameters, see Fig. 1, left. Random
realizations of the single fiber’s response are displayed
in Fig. 1, right. The mean stress-strain behavior of a
fiber within a bundle can be obtained as

µq(ε) =
∑
Θλ

∑
Θξ

q (ε;λ, ξ)︸ ︷︷ ︸
Q

gλgξ ∆θλ∆θξ︸ ︷︷ ︸
∆G

(2)

wheregλ andgξ are the densities of random parame-
tersλ andξ, respectively. The result of this expression
is plotted in Fig. 1 (right, black curve). It demonstrates

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 275



Figure 1: Left: elementary response described by a
function with two random parameters; Right: sample
of random responses (gray) and the calculated mean
response (black).

that the average response of the filament is nonlinear.
The described statistical integral exhibits the structure
of a strain-based fiber bundle model describing the be-
havior of yarns and composite materials [8]. The au-
thors have used the procedure for modeling the tensile
tests of multi-filament yarns [9].

2 Estimation of statistical character-
istics of a function with indepen-
dent random variables

The goal is to estimate the statistical moments of a
random variableQ given as a function of a control
variableε and of random variablesθ1 . . . θm:

Q = q (ε; θ1, . . . , θm) (3)

Thek-th raw statistical moment of such a variable is
given as

µk(ε) =

∫
Θ

[q(ε;θ)]k g(θ) dθ. (4)

Since only independent random variables are consid-
ered here, the joint probability density functiong(θ)
(PDF) of the random vectorθ can be replaced with
the product of univariate marginal densities

µk(ε) =

∫
Θ1

. . .

∫
Θm

[q(ε;θ)]k

· g1(θ1) . . . gm(θm) dθ1 . . . dθm.

(5)

The integration is to be performed numerically as a
summation of discrete values distributed over the dis-
cretized random domain

µk(ε) =
∑
Θ1

. . .
∑
Θm

[q (ε; θ1 . . . θm)]k︸ ︷︷ ︸
Qk

·∆G1(θ1) . . .∆Gm(θm)︸ ︷︷ ︸
∆G

,

(6)

where∆Gi(θi) denote the weighting factors that de-
pend on the particular type of sampling as specified
below. The distribution of the integration pointsΘm

within the random domain can be expressed as

Θi = [θij , j ∈ 1 . . . ni], i ∈ 1 . . . m, (7)

whereni is the number of discretization points for the
i-th variable andj counts the disretization point along
a variable. There are many ways to cover the random
domain by sampling points. In order to demonstrate
the expressive power of the language and to discuss
the computational efficiency of the possible imple-
mentation techniques we shall implement the integral
(5) in four different ways:

• Equidistant grid of random variables (TGrid)

• Non-equidistant grid of random variables gen-
erated through an equidistant grid of sampling
probabilities (PGrid)

• Crude Monte Carlo Sampling (MCS)

• Latin Hypercube Sampling (LHS)

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 276



The detailed description of these four disretization
methods can be found in the journal paper [1].

3 Implementation of the SPIRRID
class using traits

Let us shortly explain the approach to SPIRRID class
implementation. Figure 2 shows the structure of the
code in the form of a UML class diagram [10]. The
problem is decomposed into three parts:

randomization: representing the specification of the
random problem (definition of the function and
its control and random parameters).

sampling: delivering the sampling data for the given
randomization.

code generation: providing the instantiated execu-
tion method (either vectorized code or a com-
piled C code).

Figure 2: UML class diagram with a general repre-
sentation of the integration algorithm and extensible
components for sampling schemes and implementa-
tions. Attribute names preceded by slash indicate de-
rived output values implemented as property traits.

Our Python implementation of the class diagram
uses thetraits [11, 12] package provided within the
Enthought Tool Suiteto glue these parts together. The
packagetraits introduces an extended attribute defini-
tion into Python classes by including specification of
the attribute’s type and of its dynamic behavior (Ini-
tialization, Validation, Delegation, Notification and
Visualization). Such an extended attribute specifica-
tion has been used to incorporate the Model-View-
Controller design pattern into the language and pro-
vide automatic object visualization and dynamic con-
trol of state changes with minimum programming ef-
fort. This semantically rich language support allows

Figure 3: User interface view of the SPIRRID class.

developers to benefit from automatic generation of the
user-interface (Fig. 3) directly from the class view
specification, persistence of objects, declaration of
state dependencies and effective support for data vi-
sualization.

4 Computational efficiency
The mean response of the two-parametric response
function given in Eq. (1) with both parameters consid-
ered random and normally distributed can be solved
analytically:

µexact
q (ε) =

µλε

2

(
1− erf

(√
2(ε− µξ)

2σξ

))
(8)

whereerf(x) denotes the Gauss error function defined
as erf(x) = 2

√

π

∫ x

0
e−t dt. The convergence of the

sampling schemes used for the numerical estimation
of the mean has been studied depending on the num-
ber of sampling points and on executional time. Two
errors have been formulated, both local and global.
The local error measure has been defined as the rela-
tive maximum deviation along the control variableε
discretized usingnε points:

emax =
maxi

∣∣µq(εi)− µexact
q (εi)

∣∣
maxi

[
µexact
q (εi)

] , (9)

where i = 1 . . . nε. The global error measure has
been introduced as the relative root mean square er-
ror within the range of the control variableε:

erms =

√
1

nε

∑
i

(µq(εi)− µq(εi)exact)
2

maxi
[
µexact
q (εi)

] , (10)

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 277



Figure 4: Convergence to an exact solution with an increasingnumber of sampling points in terms of local and
global error measures given in Eqns. (9) and (10), respectively.

Figure 5: Convergence to an exact solution with an increasingcomputational time in terms of local and global
error measures given in Eqns. (9) and (10), respectively.

wherei = 1 . . . nε. Fig. 4 shows the convergence be-
havior in double logarithmic scale for both types of
errors for an increasing number of sampling points.
Both diagrams document the fact thatLHS covers the
random domain in a significantly more efficient way
than all the other implemented methods. The conver-
gence behavior of the other three sampling methods is
comparable.

A more relevant comparison of efficiency is given
in Fig. 5 which shows the measured CPU time for the
studied sampling methods instead ofnsim. Also in

this view, theLHS method is superior to the other
methods. PGrid sampling is revealed to be slightly
more efficient than Monte-Carlo andTGrid. The
higher efficiency is due to the fact that during the re-
sponse function evaluation, some interim results can
be reused in the broadcasted dimension and, conse-
quently, a significant number of operations can be
saved. Such a caching of interim values within a ran-
dom subspace is not possible in the Monte Carlo type
of sampling due to the unstructured coverage of the
m-dimensional space. The positive effect of vector-

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 278



ized evaluation increases as the number of random pa-
rameters grows. However, it also depends on the type
of the response function and on the current choice of
the random parameters. It must be also considered
that the vectorized evaluation of the response function
q(ε) in them-dimensional space is connected with the
exponential growth of memory consumption.

5 Execution efficiency of vectorized
and compiled code

Previous studies shown in Fig. 5 reveal that the CPU
time required to achieve sufficiently accurate results
(erms ≤ 10−3) for a function with two random vari-
ables using thenumpy code is less than 1 sec. For
more complex functions with more random variables
further speedup might be desirable. There are several
ways to improve the execution efficiency of Python
code. An overview of speedup possibilities for nu-
merical Python code has been provided in [13].

In order to accelerate the present application two
options have been used:cython [14] andweave [15].
They have been incorporated into thespirrid pack-
age as subclasses of theCodeGen class (see Fig. 2).
Studies of speedup achievable using theweave and
cython packages have been implemented as a script
interacting with a singleSPIRRID instance. Execu-
tion times have been measured for the two-parametric
function in Eq. (1) of our running example with two
types of sampling:LHS andPGrid. The size of the
sample for both sampling schemes was chosen in or-
der that a comparable level of accuracy was reached
based on the studies of sampling efficiency shown ear-
lier in Fig. 5. The accuracy required for the studies
waserms ≤ 5 · 10−5, which corresponds tonsim =
4402 for LHS andnsim = 50002 for PGrid. CPU
time was measured for three phases of the computa-
tion:

• the sampling time needed for preparing the ar-
raysθ and∆G within thesampling object,

• the time needed to prepare and compile the
methodmu q method within the codegen ob-
ject, and

• the time needed to execute the integration proce-
dure on the prepared data arrays.

Each version of the code was executed twice in or-
der to show the difference between CPU time with
and without the setup and compilation of the gener-
ated C code. CPU times obtained forLHS shown in
Fig. 6 (left) reveal that a significant amount of time
was spent on the permutation ofθ arrays. For all three

types of code a standard permutation algorithm avail-
able in thenumpy package was used so that the sam-
pling time remained constant (≈ 0.19 s) in all runs.

The shortest execution time was achieved in the
second run of the compiledweave code of the code
was only insignificantly slower. This is not surprising
since both compiled versions lead to an optimizedC
code with a similar structure. As already stated in [13]
the efficiency ofweave andcython can be regarded
as equivalent. The overall CPU time of the scripting
numpy version was about 2.5 times longer than for
both compiled versions. Regarding the time required
by the pure integration procedure, the compiled code
is 12 times faster than the scripting code. This relation
is in agreement with the studies published in [13].

Even though the grid-based sampling schemes are
significantly slower thanLHS it is interesting to ex-
amine the effect of compilation on the speedup for the
PGrid sampling shown in the right diagram of Fig. 6.
Regarding the CPU time required by the pure integra-
tion (numpy: 18.44 s,weave: 3.57 s) we can see that
the speedup factor (≈ 5) is much smaller than in the
case ofLHS (≈ 12).

In the simple example used for this study, the
setup and compilation time of the first run was longer
than the time spent on computation. For larger prob-
lems with a more complex response function, more
random variables and more sampling points, the pro-
portion of time spent on setup and compilation would
certainly diminish. Studies of more complex func-
tions with different combinations of random variables
have been included in thespirrid package [2].

6 Conclusion

In the present paper we have reported on the scien-
tific computing tool for estimation of statistical char-
acteristics of multi-variate random functions devel-
oped in high-level programming language Python. We
have described mathematical formulation of the prob-
lem, designing of an algorithmic object reflecting the
state dependencies between the editable components
and speeding up of the code to achieve the efficiency
of low-level compiled code. The resulting algorith-
mic object for statistical integration can be interac-
tively edited by modifying the function, declaring its
parameters as control or random variables, choosing
and configuring probabilistic distributions of the ran-
dom variables, selecting from four types of sampling
schemes and configuring the execution code for the
integration.

The code ofspirrid package based on the En-
thought Traits library has been made available for
downloading through the Github repository [2].

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 279



Figure 6: Comparison of execution times forLHS and PGrid sampling needed in the first and second run of
numpy, cython andweave code (nε = 80).

Acknowledgements: The work of the first and
second author was supported by the Czech Sci-
ence Foundation under project no. GCP105/10/J028,
by project FAST-S-12-1804 and by the project
CZ.1.07/2.3.00/30.0005 of Brno University of Tech-
nology. The work of the third and fourth author was
supported by the Deutsche Forschungsgemeinschaft
(DFG project number CH/276/2-1 and SFB532/T05).
This support is gratefully acknowledged.

References:

[1] R. Chudoba, V. Sadı́lek, R. Rypl, and
M. Vořechovský. Using Python for scientific
computing: an efficient and flexible evaluation
of the statistical parameters of functions with
multivariate random inputs.Journal of Com-
puter Physics Communications, In review.

[2] SPIRRID: Tool for estimation of statistical char-
acteristics of multi-variate random functions,
http://github.com/simvisage/spirrid, 2011.

[3] H. P. Langtangen, X. Cai, On the Effi-
ciency of Python for High-Performance Com-
puting: A Case Study Involving Stencil Updates
for Partial Differential Equations, in: H. G.
Bock, E. Kostina, H. X. Phu, R. Rannacher
(Eds.), Modeling, Simulation and Optimization
of Complex Processes, Springer Berlin Heidel-
berg, 2008, pp. 337–357.

[4] S. v. d. Walt, S. C. Colbert, G. Varoquaux, The
NumPy array: A structure for efficient numeri-
cal computation, Computing in Science & Engi-
neering 13 (2011) 22–30.

[5] J. Nilsen, MontePython: implementing quantum
Monte Carlo using Python, Computer Physics
Communications 177 (2007) 799–814.

[6] Z. Kala, Sensitivity analysis of steel plane
frames with initial imperfections, Engineering
Structures 33 (2011) 2342–2349.

[7] Z. Kala, Geometrically non-linear finite element
reliability analysis of steel plane frames with ini-
tial imperfections, Journal of Civil Engineering
and Management 18 (2012) 81–90.

[8] S. L. Phoenix, H. M. Taylor, The asymptotic
strength distribution of a general fiber bundle,
Advances in Applied Probability 5 (1973) 200–
216.

[9] R. Chudoba, M. Vořechovský, M. Konrad,
Stochastic modeling of multi-filament yarns I:
Random properties within the cross section and
size effect, International Journal of Solids and
Structures 43 (2006) 413–434.

[10] G. Booch, J. Rumbaugh, I. Jacobson, The Uni-
fied Modeling Language User Guide, Addison-
Wesley Professional, 1st edition, 1998.

[11] D. C. Morrill, J. M. Swisher, Traits 4 user man-
ual, http://docs.enthought.com/traits/traitsuser
manual/index.html, 2011.

[12] L. Pierce, J. Swisher, Traits UI 4 user
manual, http://docs.enthought.com/traitsui/
traitsui usermanual/index.html, 2011.

[13] I. M. Wilbers, H. P. Langtangen, A. Odegard,
Using Cython to speed up numerical Python pro-
grams, Proceedings of MekIT 9 (2009) 495–
512.

[14] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin,
D. S. Seljebotn, K. Smith, Cython: The best of
both worlds, Computing in Science & Engineer-
ing 13 (2011) 31–39. WOS:000288053300004.

[15] Weave: tools for inlining C/C++ within Python
code, http://www.scipy.org/Weave, 2011.

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 280

http://github.com/simvisage/spirrid
http://docs.enthought.com/traits/traits_user_manual/index.html
http://docs.enthought.com/traits/traits_user_manual/index.html
http://docs.enthought.com/traitsui/traitsui_user_manual/index.html
http://docs.enthought.com/traitsui/traitsui_user_manual/index.html
http://www.scipy.org/Weave



